Special Lagrangian submanifolds in the complex sphere
نویسنده
چکیده
Special Lagrangian submanifolds may be defined as those submanifolds which are both Lagrangian (an order 1 condition) and minimal (an order 2 condition). Alternatively, they are characterised as those submanifolds which are calibrated by a certain n-form (cf [HL]), so they have the remarkable property of being area minimizing. Their study have received many attention recently since connections with string theory have been discovered. More particularly, understanding fibrations of special Lagrangian (possibly with singularities) in Calabi-Yau manifolds of (complex) dimension 3 is crucial for mirror symmetry (cf [SYZ],[Jo]). Since the pioneering work of Harvey and Lawson [HL], where this notion were introduced, several authors ([Ha],[Jo],[CU2]) have discovered many families of special Lagrangian submanifolds in the complex Euclidean space, however very few examples (cf [Br]) of such submanifolds are known in other Calabi-Yau manifolds, where this notion is naturally extended. Maybe the main reason is that such manifolds are somewhat rare, in particular the existence of compact, Calabi-Yau manifolds is a hard result of S.-T. Yau [Y] involving non explicit solutions to some PDE. However
منابع مشابه
Isotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملOn a new construction of special Lagrangian immersions in complex Euclidean space
Special Lagrangian submanifolds of complex Euclidean space C have been studied widely over the last few years. These submanifolds are volume minimizing and, in particular, they are minimal submanifolds. When n = 2, special Lagrangian surfaces of C are exactly complex surfaces with respect to another orthogonal complex structure on R ≡ C. A very important problem here, and even a good starting p...
متن کاملConstruction of Hamiltonian-minimal Lagrangian Submanifolds in Complex Euclidean Space
We describe several families of Lagrangian submanifolds in the complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.
متن کاملOn Indefinite Special Lagrangian Submanifolds in Indefinite Complex Euclidean Spaces
In this paper, we show that the calibrated method can also be used to detect indefinite minimal Lagrangian submanifolds in C k . We introduce the notion of indefinite special Lagrangian submanifolds in C k and generalize the well-known work of Harvey-Lawson to the indefinite case.
متن کاملSpecial Lagrangian Geometry in irreducible symplectic 4-folds
Having fixed a Kaehler class and the unique corresponding hyperkaehler metric, we prove that all special Lagrangian submanifolds of an irreducible symplectic 4-fold X are obtained by complex submanifolds via a generalization of the so called hyperkaehler rotation trick; thus they retain part of the rigidity of the complex submanifolds: indeed all special Lagrangian submanifolds of X turn out to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008